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ABSTRACT 

Significant spatial heterogeneity and a limited number of measurements lead to 
uncertainty in characterization of subsurface formation properties and thus, to uncertainty in 
predicting fluid flow and transport in the formations. Such uncertainties add another 
dimension in probability space to the already large-scale subsurface problems. In this work, 
we develop an accurate yet efficient approach for solving flow and transport problems in 
large-scale heterogeneous formations. We do so by obtaining higher-order solutions of the 
prediction and the associated uncertainty of subsurface fluid quantities using the moment-
equation approach based on Karhunen-Loéve decomposition (KLME). In the KLME 
approach, the log permeability (lnk) field is first expanded into a multiscale series in terms of 
orthogonal standard Gaussian random variables with their coefficients obtained from the 
eigen-decomposition of the lnk covariance. Next, the dependent flow and transport quantities 
are all decomposed with perturbation expansions in which each individual term is further 
expanded into a polynomial series of orthogonal Gaussian random products. The coefficients 
associated with these series are solved recursively from low to high expansion orders. The 
statistical moments of flow and transport predictions can then be calculated from these 
coefficients using simple algebraic operations. The new approach is validated and its 
efficiency and accuracy are demonstrated by comparing with traditional Monte Carlo 
simulations in a couple of subsurface test problems.  

1. INTRODUCTION 

Subsurface formations are inherently heterogeneous and exhibit a high degree of 
variability in medium properties such as permeability (k) at a multiplicity of scales. Due to the 
incomplete knowledge of medium properties, it is often more suitable to approach subsurface 
fluid flow and transport problems in a stochastic framework. The added dimension in 
probability space to the already large-scale subsurface problems, however, calls for the 
development of new stochastic methodologies that are both accurate and computationally 
effective. The traditional Monte Carlo simulations (MCS) method is conceptually 
straightforward, but is very difficult to apply for large-scale problems under the field 
conditions because of its computational cost (Hassan et al., 1998). A major alternative to the 
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MCS method is the approach based on the moment equations (ME). In the ME approach 
(Graham and McLaughlin, 1989; Neuman, 1993; Zhang, 1998; Zhang and Lu, 2002) a set of 
deterministic partial differential equations are derived for the statistical moments of fluid 
quantities (such as hydraulic heads and chemical concentrations) using the method of 
perturbation. These equations are then solved either analytically or numerically. In general, 
analytical solutions of the moment equations are difficult to obtain except for some limiting 
cases under simplifying conditions. The computational effort required in the numerical ME 
approach increases rapidly with the size of model, which makes its application infeasible in 
most field practices. Although the ME approach has produced some success when applied to 
systems of large heterogeneity, it is typically restricted to problems of relatively small 
variability in medium properties.  

To alleviate the computational burden, Zhang and Lu (2004) developed a new approach 
that combines Karhunen-Loéve decomposition and perturbation methods. Specifically, using 
the new approach, with a much lower computational cost, they were able to evaluate the 
steady state mean pressure head and the mean flux up to the fourth order and variances of the 
pressure head and flux to the sixth order with respect to the standard deviation of log 
permeability. The computational cost required by the KLME approach has been 
systematically compared with the Monte Carlo simulations and the conventional moment 
method (Lu and Zhang, 2004). Lu and Zhang (2006) extended the KLME approach to 
transient fluid flow in the three-dimensional space and demonstrated the applicability of this 
approach to simulating flow in large-scale heterogeneous reservoirs. In this work, we further 
develop the KLME approach for solving stochastic fluid flow and transport problems in large-
scale heterogeneous formations.  

2. METHODOLOGY 

1.1 Governing Equations.  
The governing equation for single-phase flow in saturated porous media under transient 

conditions can be written as, 
( , )[ ( ) ( , )]s s

h tK h t q S
t

∂
∇ ⋅ ∇ + =

∂
xx x ,       (1) 

subject to appropriate initial and boundary conditions. Here ( )sK x  is the hydraulic 
conductivity defined as μρ /gk f  with fρ  the fluid density, μ  the fluid viscosity and g the 
acceleration of gravity; h is the hydraulic head; q is the flow sink/source; Ss is the specific 
storage; x is the vector of spatial Cartesian coordinate ),,( zyx T; t is time. In the study ( )sK x  
(or k) is taken as a random function and all other parts of the flow model are assumed to be 
deterministic.  

The transport of a conservative solute in three-dimensional flow is given by the advection-
dispersion equation with sinks/sources, 

( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) s s
C t D t C t v t C t q C

t
∂

= ∇ ⋅ ∇ −∇⋅ +
∂
x x x x x ,    (2) 

where C is the solute concentration; v is the velocity vector ( ( , ), ( , ), ( , ))x y zv t v t v tx x x T that can 
be determined through Darcy’s law, ( , ) ( , ) / ( ) ( , ) /sv t q t K h tθ θ= = − ∇x x x x  after h is solved 
from (1); D is the hydrodynamic dispersion tensor whose values are dependent on velocities 



CMWRXVI 

.  3

as well as medium properties (Burnett and Frind, 1987); qs and Cs are the flow rate and solute 
concentration associated with external sinks/sources, and θ is porosity The transport equation 
is typically solved sequentially after the solution of flow equations is obtained assuming that 
the changes of solute concentrations do not affect velocity fields significantly.  

1.2 Karhunen-Loéve (KL) decomposition of permeability.  
As only single-phase saturated fluid is considered in this paper, fρ  and μ  are fixed and 

do not change with space and time. Therefore, for convenience, we directly work on the 
hydraulic conductivity instead of permeability in the following discussions. 
Let ( ) ln[ ( )]SY K=x x , the covariance function of ( )Y x  is 1 2 1 2( , ) '( ) '( )YC Y Y=< >x x x x , where 
perturbation '( )Y x  is defined as '( ) ( ) ( )Y Y Y= − < >x x x , and < > is expected mean operator. 
The basic idea of the KL decomposition is to decompose the positive definite covariance 
function of ( )Y x  as (Courant and Hilbert, 1953), 

1 2 1 2
1

( , ) ( ) ( )Y n n n
n

C f fλ
∞

=

=∑x x x x ,        (3) 

where λn and fn(x) are the deterministic eigenvalues and eigenfunctions that can be calculated 
by solving the following Fredholm equation analytically or numerically, 

1 2 1 1 2( , ) ( ) ( )YD
C f d fλ=∫ x x x x x .        (4) 

The mean-removed term '( )Y x  can be expanded in terms of λn and fn(x), 

1
( ) ( )n n n

n
Y fξ λ

∞

=

′ =∑x x .         (5)  

where nξ  are the orthogonal Gaussian standard random variables. Since eigenvalues λn and 
their eigenfunctions fn(x) always appear together, in the following derivations, we define new 
functions )()(~ xx nnn ff λ=  and then the tilde over fn is dropped for simplicity. 

1.3 Karhunen-Loéve expansion-based moment equations (KLME).  
Because the variability of dependent variables h(x,t), v(x,t), D(x,t) and C(x,t) depends on 

the input variabilities, i.e., the variability of '( )Y x , one may express h(x,t), v(x,t), D(x,t) and 
C(x,t) as an infinite series,  

),(),(
0

)( tt
m

m xx ∑
∞

=
= φφ ,          (6) 

where φ  stands for h, v, D or C, or )(mφ  are the mth-order expansions with respect to the 
standard deviation of log hydraulic conductivity, Yσ . Substituting (6) into the original 
governing equations (1) – (2) and then collecting terms at separate orders, for the transport 
equation, one obtains at m = 0, 

( ) ( ) ssCqCvCD
t

C
+⋅∇−∇⋅∇=

∂
∂ )0()0()0()0(

)0(

,      (7) 

and for m ≥ 1, 

( ) ( ) )()()0()()0(
)(

mmm
m

sCvCD
t

C
+⋅∇−∇⋅∇=

∂
∂ ,      (8) 

where  
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The equations for flow can be obtained in a similar manner (Zhang and Lu, 2004). In the 
equations above for simplicity we have omitted the spatial and temporal indices x and t. In the 
conventional ME approach, the statistical moments of C and h are directly solved based on 
some simple manipulation of these expanded equations (Zhang and Lu, 2002). In the KLME 
approach, however, one further decomposes the random terms )(mh , )(mv , )(mD  and )(mC  as, 

∑
∞

= =
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1,...,,
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,...,,
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j

m φξφ ,         (10) 

where 
jiξ  are the orthogonal Gaussian random variables that are used to decompose 'Y  in (5); 

)(
,...,, 21

m
iii m

φ  are deterministic functions to be determined; i1, i2, …, im are referred to as modes at 
the mth order. Substituting (10) and the KL decomposition of 'Y  into (8) – (9), one obtains the 
equations for the mode coefficients )(

,...,, 21
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The equations for )(
,...,, 21

m
iii m

h  and )(
,...,, 21

m
iii m

v  can be found in Zhang and Lu (2004). The summation 

, ,...,1 2i i imP∑ in (12) is taken over a subset of the permutation of { }miii ,...,, 21  in which repeated 

terms are excluded. For example, )2(
,

)1()2(
,

)1()2(
,

)1()2(
,

)1(

,,

jikkijkji
P

kji CDCDCDCD
kji

∇+∇+∇=∇∑ . 

)2(
,

)1(
jki CD ∇  is identical to )2(

,
)1(

kji CD ∇  and thereby excluded as )2(
,kjC  calculated this way is 

symmetric with respect to its subscript indices. Detailed derivations of  )(
,...,, 21

m
iii m

D  can be found 
in Liu et al. (in review). 

Once the deterministic coefficients )(
,...,, 21

m
iii m

h , )(
,...,, 21

m
iii m

v , )(
,...,, 21

m
iii m

D  and )(
,...,, 21

m
iii m

C  are calculated, 
one can easily compute their means and variances by simple algebraic operations, 

>< φ  ≈ ∑
∞

=

+
1

)2(
,

)0(

i
iiφφ ,         (13) 

where the first term on the right hand side is the zeroth-order mean solution and the second 
term represents the second-order correction. The variances can be estimated as, 
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where the first term on the right-hand side is the variance up to the first order in 2
Yσ , and the 

second and third terms represent the second-order corrections. 
Compared to the conventional ME approach, the KLME method has two distinctive 

advantages. First, unlike the conventional ME approach, the KLME method does not require 
solving directly the covariance equations such as head covariances and head-permeability 
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cross covariances whose computations are proportional to the number of grid nodes (N), 
thereby significantly reducing the computational efforts especially for large-scale problems. 
Second, as demonstrated above, the higher-order terms can be easily incorporated into the 
KLME method. The conventional ME approach usually approximates the covariance of flow 
quantities only up to the first order in 2

Yσ  because the computational burden increases 
drastically when higher-order corrections are considered. For instance, to obtain the hydraulic 
head variance up to second-order in 2

Yσ , one needs to solve equations for terms such as 

1 2 3'( ) '( ) '( , )Y Y h t< >x x x , which generally requires solving the partial differential equations 
for N2 times. In (13) – (14) we have computed the means and variances up to the second-
order. Even higher-order implementations are practical in the KLME method (Zhang and Lu, 
2004). It is believed that incorporation of higher-order correction terms has enhanced the 
applicability of the KLME method to cases in which the heterogeneity is large. 

There are two additional attractive features associated with the KLME approach. First, all 
equations for the deterministic coefficients )(

,...,, 21

m
iii m

h  and )(
,...,, 21

m
iii m

C  share exactly the same 
structure as the original equations, which greatly simplifies its implementation as the existing 
simulators/solvers can be utilized without major modifications. This feature also allows for a 
significant reduction in the computation effort as the coefficient matrix remains unchanged 
and only the right-hand-side vector needs to be updated across different orders and modes. 
Second, at each expansion order, the equations at different modes are independent of each 
other, which allows performing massively parallel computation when the physical problem 
dimensions are large. 

3. ILLUSTRATIVE EXAMPLES 

The KLME approach developed in this study is validated and its efficiency and accuracy 
are demonstrated with comparisons to traditional Monte Carlo simulations in a series of 
hypothetical numerical experiments. In this section we first present a three-dimensional test 
case in which the flow quantities (i.e., heads and velocities) are evaluated. In the second test 
case we consider a two-dimensional example where fluid transport results (i.e., chemical 
concentrations) are focused on. In both examples a total number of 5000 realizations are used 
in the MC simulations; in the KLME method, the number of modes at the first three orders is 
100, 20 and 10, respectively, resulting in a total of 1 (zeroth-order) + 100 (first-order) + 210 
(second-order) + 220 (third-order) = 531 model simulations. The computational effort is 
approximately the same for each MC realization and for each mode simulation. 

1.1    Three-dimensional flow simulation.  
The flow field is a three-dimensional block of 8 m long by 8 m wide by 4 m deep (Figure 

1). There is no flow across the northern, southern, top and bottom boundaries; at the western 
and eastern boundaries the hydraulic heads are prescribed as constant at 10.5 and 10.0 m, 
respectively. A numerical block-centered finite-difference mesh of 21 by 20 by 10 regular 
cells (0.4 m on a side) is used to represent the physical domain. There is a well at the center of 
domain, pumping with a rate of 0.7 m3/d. The model simulation is transient with initial heads 
determined from a steady-state calculation without well operation. The storage coefficient is 
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10-4. The log hydraulic conductivity field is assumed random with zero mean (the geometric 
mean GK = 1.0 m/d) and follows a separable exponential covariance function,  

1 2( , )YC =x x )/||/||/||exp( 212121
2

zyxY zzyyxx ηηησ −−−−−− ,   (15) 

where the correlation lengths xη  = yη  = zη = 2.0 m and variance 2
Yσ  = 1.0.  

 
 
 
 
 
 
 
 
 
 
 

FIGURE 1. Schematic diagram of model setup in the flow test case. 

 
 
Figure 2 displays the means and variances of heads and flow velocities along the profile 

A-A′ at three different times after well pumping. The legends for different curves are provided   
in Figure 2(a). Both the means and variances are approximated up to the second-order in the 
KLME method. Across different times, the KLME approach is accurate in matching the MCS 
solutions for all flow quantities examined. Due to pumping, there is a sharp head drop at the 

FIGURE 2. The means and variances of heads and velocities at different times after 
pumping. 
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well location. The head variances rise quickly near the well and stay relatively small and flat 
in the area away. The velocity statistics are also dominated by well pumping. The mean 
velocities show a large variation at the well and so do the velocity variances. From this 
example we can see the KLME method is accurate in providing the stochastic flow solutions. 
As demonstrated earlier, this is always a necessary condition before the transport problems 
can be appropriately solved.   

1.2    Two-dimensional transport simulation.  
The transport analysis is conducted in a rectangle of 30 m long by 10 m wide with no flow 
across the northern and southern boundaries and constant head 10.0 m at the eastern 
boundary. There is a specified flux across the western boundary whose value is determined 
such that an average hydraulic gradient of 0.001 is established in the west-east direction. The 
log conductivity field is assumed to be second order stationary and follows a separable 
exponential covariance with parameters 2=xη m, 1=yη m, 25.02 =Yσ  and GK = 1.0 m/d. The 
transport simulations employ a uniform effective porosity of 0.35, longitudinal and transverse 
dispersivities 0.2m and 0.02 m, and a molecular diffusion coefficient of 5.0×10-4 m2/d. Initial 
mass is instantaneously injected in a single cell (Figure 3).  

Figure 3 shows the mean concentrations and concentration variances computed from the 
KLME approach as compared to the MCS solutions. Results are presented for concentrations 
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FIGURE 3. The means and variances of concentrations for the transport test case. 
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normalized by the initial source concentration C0 at two different times. Figure 3(a) contours 
the zeroth- and second-order mean concentrations along with the MCS solutions, indicating 
that the zeroth results underestimate solute spreading towards the edges of plume and show a 
large overestimation near the plume center. By adding the second-order corrections, the 
KLME approach is able to match the MCS solutions better. These observations are further 
corroborated by the concentration profiles along A-A′ shown in Figure 3(b). For the 
concentration variances shown in Figure 3(c), the first-order results overshoot the MCS 
solutions at the bimodal peaks while undershoot the low values in the center area. The second-
order corrections help improve the agreement by rectifying both the overestimation at the 
peaks and the underestimation at the middle low values on the variance profiles. 

4. CONCLUSIONS 

This paper has presented a Karhunen-Loéve decomposition based moment-equation 
(KLME) approach for solving stochastic fluid flow and transport problems in large-scale 
heterogeneous formations. The accuracy and efficiency of this approach have been validated 
with comparisons to the classical Monte Carlo simulations (MCS) in two hypothetical 
examples. Results indicate that the KLME approach offers one order of magnitude reduction 
in the computation effort, and yet still provides accurate solutions comparable to the MCS. 
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